哺乳期乳腺炎吃什么药| 登革热是什么| 维生素b6是治什么的| 小便憋不住尿裤子是什么情况| 人的运气跟什么有关| 你是什么| 小儿手足口病吃什么药| 市政协秘书长是什么级别| 蒲公英泡水喝有什么效果| 大便干燥拉不出来是什么原因| 小囊肿是什么病严重吗| tap什么意思| 士字五行属什么| 低血糖是什么引起的| 美国为什么打伊拉克| 宰相相当于现在的什么官| 火险痣是什么意思| 吃桃子有什么好处| 第一次同房要注意什么| 什么叫精索静脉曲张啊| 美是什么生肖| 表示什么意思| 公立医院是什么意思| 凝滞是什么意思| 琴棋书画指的是什么| 限量版是什么意思| 单身公寓是什么意思| 螃蟹为什么吐泡泡| 为什么手术服是绿色的| ug什么意思| 月经吃什么| 背靠背什么意思| nm是什么意思| 鸡腿炖什么好吃| 术后病人吃什么营养恢复快| got什么意思| 唉声叹气是什么意思| 单三是什么| 氩弧焊对身体有什么危害| 伤官运是什么意思| 巨峰葡萄为什么叫巨峰| 中央民族大学什么档次| 有黄痰吃什么药| 出殡下雨是什么兆头| 肺炎支原体抗体阳性是什么意思| 鼾症是什么病| 梦见自己结婚了是什么意思| 1月25日什么星座| 庄子姓什么| 身上泡疹是什么引起的| 工作效率等于什么| 忧心忡忡是什么意思| 假性近视是什么意思| 猴子吃什么| 星期六打喷嚏代表什么| 拔牙有什么危害| 洗衣粉和洗衣液有什么区别| 为什么脚上会长鸡眼| 早搏的症状是什么表现| af什么意思| 夹层是什么意思| 心肌炎吃什么药| 胆囊胆固醇结晶是什么| 怂人是什么意思| white是什么意思颜色| 以讹传讹什么意思| 脾大是什么原因造成的| 鱼不能和什么一起吃| 什么是疤痕体质| 公粮是什么意思| 老花眼有什么症状| 梦到狗什么意思| 肾炎吃什么药| 把脉把的是什么脉| 傲慢什么意思| 希特勒为什么杀犹太人| 老花镜什么品牌好| 有缘人什么意思| 经血粉红色是什么原因| paw是什么意思| 回盲部憩室是什么意思| 梦到自己生病了什么意思| nc是什么意思| 女人胃寒吃什么好得快| 蒙氏结节是什么| 怀孕第一个月有什么症状| 米线是什么材料做的| 半夜12点是什么时辰| 47是什么生肖| 扬州有什么好玩的地方| vsd是什么意思| 鹿象征什么寓意| 切尔斯什么意思| 糖尿病患者可以吃什么水果| 小孩晚上睡觉磨牙是什么原因| 风湿挂什么科| 槟榔是什么| p0s是什么意思| im什么意思| 给孩子测骨龄应该挂什么科| 健康证需要什么材料| 每天吃葡萄有什么好处和坏处| 蜂王浆什么时间吃最好| 柔和是什么意思| 1.12是什么星座| 吃什么降三高最好| 草酸是干什么用的| 隐形眼镜什么牌子好| 晨尿很黄是什么原因| crayon是什么意思| 教育局局长是什么级别| 金牛座和什么星座不合| 肝转氨酶高有什么危害| 一直腹泻是什么原因| 喝苦荞茶有什么好处和坏处| 怀孕白细胞高是什么原因| 尿酸高喝什么水最好| 牙齿脱矿是什么原因| 什么是病毒| 五月二十是什么星座| 鲫鱼不能和什么一起吃| 搬家有什么讲究| 鱼生是什么鱼| 陈旧性骨折是什么意思| 吃什么补气养血最快| 三句半是什么意思| 鲁肃是一个什么样的人| 前列腺炎不能吃什么| 推是什么意思| 妇科假丝酵母菌是什么病| 藏海花是什么花| 87年属什么的生肖| 照猫画虎什么意思| 曹操是个什么样的人| 黄芪的功效是什么| 前列腺钙化有什么症状| 氰化钾是什么| 朵字五行属什么| 外痔疮有什么症状| 囗腔溃疡吃什么维生素| 什么食物补气| 蓄谋已久什么意思| 阴道痛什么原因| 6.26什么星座| 换床有什么讲究| 大暑是什么意思| 金利来属于什么档次| 排骨炖什么菜好吃| 飚是什么意思| 经常手淫会导致什么| 什么的桃花| 球代表什么生肖| 隶属什么意思| hpv45型阳性是什么意思| 11月21日什么星座| 雄黄是什么东西| 什么麻料最好| 什么字五行属金| 症结是什么意思| 前列腺实质回声欠均匀什么意思| 脱皮缺什么维生素| 染指什么意思| 大排畸是什么检查| 白带发黄什么原因| 低能儿是什么意思| 什么是裸眼视力| otc是什么意思| 落花生为什么叫落花生| qn医学上是什么意思| 环比是什么| 立普妥是什么药| 96120是什么电话| 第二聚体高什么意思| 包皮红肿用什么药| 揉肚子有什么好处| 不带壳的蜗牛叫什么| 吃什么东西补血| 重阳节应该吃什么| 脚掌发红是什么原因| 绯色是什么颜色| 孕酮低跟什么有关系| 尿蛋白弱阳性是什么意思| 拐枣泡酒有什么功效| 心源性猝死是什么意思| 减肥每天吃什么三餐| 排卵试纸什么时候测最准| 熟视无睹什么意思| 酸枣仁配什么治疗失眠| 做饼用什么面粉| 六月初五是什么日子| 属龙的守护神是什么菩萨| 什么的天山| 吃什么卵泡长得快又圆| 火把节什么时候| 水浒传主要讲了什么| 人在什么情况下会发烧| 聚焦是什么意思| 冠脉硬化什么意思| 透明人什么意思| 什么牌子的洗面奶好用| 指甲是白色的是什么原因| 奥运五环代表什么| 血液循环不好吃什么药| 奶粉罐可以做什么手工| 云为什么是白色的| 鉴黄师是什么职业| 嘴上起泡是什么原因| 心率快吃什么药效果好| 最聪明的狗是什么狗| 腰疼吃点什么药| 湦是什么意思| 咳嗽有痰吃什么药| 浸润癌是什么意思| 实证是什么意思| 为什么喝中药会拉肚子| 右肾肾盂分离什么意思| 门可罗雀是什么意思| 耀字五行属什么| 肝功能谷丙转氨酶偏高是什么原因| 鱼条念什么| 鸿五行属什么| 拖是什么意思| 如来是什么意思| 老豆腐和嫩豆腐有什么区别| 韩后属于什么档次| 老打瞌睡犯困是什么原因| 水满则溢月盈则亏是什么意思| 舌吻有什么好处| 吃什么东西补充胶原蛋白| 脸上长黑斑是什么原因引起的| 贻字五行属什么| 老烂腿用什么药最好| christmas是什么意思| 阴影是什么意思| 梦见手机丢了又找到了是什么意思| 派出所什么时候上班| 为什么叫白俄罗斯| 醪糟是什么| 胃胀气是什么原因| 冬是什么结构| 伤感是什么意思| 粉色配什么颜色| 法令纹上有痣代表什么| 团长相当于地方什么官| 小暑吃什么水果| 细菌感染引起的发烧吃什么药| 落井下石是什么意思| 鸡拉绿色粪便吃什么药| 什么叫私生饭| 嗨体是什么| aojo眼镜什么档次| 湿气重吃什么水果好| 熟地有什么功效| 为什么会莫名其妙流鼻血| 苁蓉有什么功效| 什么人生病从来不看医生| 面瘫吃什么药| 什么是糖皮质激素| 阴道红肿是什么原因| 内能是什么| 什么而去| 娅字五行属什么| 十一月二十五是什么星座| 纯阳之人有什么特征| 百度

东盟为什么没有中国

(Redirected from Twos complement)
百度 座谈会上,陈一新说,机遇已在,宏图已绘,思路已定,只要我们抓住机遇,持续发力,矢志奋斗,乘势而上,大武汉复兴指日可待。

Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers,[1] and more generally, fixed point binary values. As with the ones' complement and sign-magnitude systems, two's complement uses the most significant bit as the sign to indicate positive (0) or negative (1) numbers, and nonnegative numbers are given their unsigned representation (6 is 0110, zero is 0000); however, in two's complement, negative numbers are represented as the bit complement of their magnitude plus 1 (?6 is 1010). The number of bits in the representation may be increased by padding all additional high bits of positive or negative numbers with 1's or 0's, respectively, or decreased by removing additional leading 1's or 0's.

Unlike the ones' complement scheme, the two's complement scheme has only one representation for zero, with room for one extra negative number (the range of a 4-bit number is -8 to +7). Furthermore, the same arithmetic implementations can be used on signed as well as unsigned integers[2] and differ only in the integer overflow situations, since the sum of representations of a positive number and its negative is 0 (with the carry bit set).

Procedure

edit

The following is the procedure for obtaining the two's complement representation of a given negative number in binary digits:

  • Step 1: starting with the absolute binary representation of the number, with the leading bit being a sign bit;[3]
  • Step 2: inverting (or flipping) all bits – changing every 0 to 1, and every 1 to 0;
  • Step 3: adding 1 to the entire inverted number, ignoring any overflow. Accounting for overflow will produce the wrong value for the result.

For example, to calculate the decimal number ?6 in binary from the number 6:

  • Step 1: +6 in decimal is 0110 in binary; the leftmost significant bit (the first 0) is the sign (just 110 in binary would be ?2 in decimal).
  • Step 2: flip all bits in 0110, giving 1001.
  • Step 3: add the place value 1 to the flipped number 1001, giving 1010.

To verify that 1010 indeed has a value of ?6, add the place values together, but subtract the sign value from the final calculation. Because the most significant value is the sign value, it must be subtracted to produce the correct result: 1010 = ?(1×23) + (0×22) + (1×21) + (0×20) = 1×?8 + 0 + 1×2 + 0 = ?6.

Bits: 1 0 1 0
Decimal bit value: ?8 4 2 1
Binary calculation: ?(1×23) (0×22) (1×21) (0×20)
Decimal calculation: ?(1×8) 0 1×2 0

Note that steps 2 and 3 together are a valid method to compute the additive inverse   of any (positive or negative) integer   where both input and output are in two's complement format. An alternative to compute   is to use subtraction  . See below for subtraction of integers in two's complement format.

Theory

edit

Two's complement is an example of a radix complement. The 'two' in the name refers to the number 2N - "two to the power of N", which is the value in respect to which the complement is calculated in an N-bit system (the only case where exactly 'two' would be produced in this term is N = 1, so for a 1-bit system, but these do not have capacity for both a sign and a zero). As such, the precise definition of the two's complement of an N-bit number is the complement of that number with respect to 2N.

The defining property of being a complement to a number with respect to 2N is simply that the summation of this number with the original produce 2N. For example, using binary with numbers up to three bits (so N = 3 and 2N = 23 = 8 = 10002, where '2' indicates a binary representation), a two's complement for the number 3 (0112) is 5 (1012), because summed to the original it gives 23 = 10002 = 0112 + 1012. Where this correspondence is employed for representing negative numbers, it effectively means, using an analogy with decimal digits and a number-space only allowing eight non-negative numbers 0 through 7, dividing the number-space into two sets: the first four of the numbers 0 1 2 3 remain the same, while the remaining four encode negative numbers, maintaining their growing order, so making 4 encode ?4, 5 encode ?3, 6 encode ?2 and 7 encode ?1. A binary representation has an additional utility however, because the most significant bit also indicates the group (and the sign): it is 0 for the first group of non-negatives, and 1 for the second group of negatives. The tables at right illustrate this property.

Three-bit integers
Bits Unsigned value Signed value
(Two's complement)
000 0 0
001 1 1
010 2 2
011 3 3
100 4 ?4
101 5 ?3
110 6 ?2
111 7 ?1
Eight-bit integers
Bits Unsigned value Signed value
(Two's complement)
0000 0000 0 0
0000 0001 1 1
0000 0010 2 2
0111 1110 126 126
0111 1111 127 127
1000 0000 128 ?128
1000 0001 129 ?127
1000 0010 130 ?126
1111 1110 254 ?2
1111 1111 255 ?1

Calculation of the binary two's complement of a positive number essentially means subtracting the number from the 2N. But as can be seen for the three-bit example and the four-bit 10002 (23), the number 2N will not itself be representable in a system limited to N bits, as it is just outside the N bits space (the number is nevertheless the reference point of the "Two's complement" in an N-bit system). Because of this, systems with maximally N-bits must break the subtraction into two operations: first subtract from the maximum number in the N-bit system, that is 2N?1 (this term in binary is actually a simple number consisting of 'all 1s', and a subtraction from it can be done simply by inverting all bits in the number also known as the bitwise NOT operation) and then adding the one. Coincidentally, that intermediate number before adding the one is also used in computer science as another method of signed number representation and is called a ones' complement (named that because summing such a number with the original gives the 'all 1s').

Compared to other systems for representing signed numbers (e.g., ones' complement), the two's complement has the advantage that the fundamental arithmetic operations of addition, subtraction, and multiplication are identical to those for unsigned binary numbers (as long as the inputs are represented in the same number of bits as the output, and any overflow beyond those bits is discarded from the result). This property makes the system simpler to implement, especially for higher-precision arithmetic. Additionally, unlike ones' complement systems, two's complement has no representation for negative zero, and thus does not suffer from its associated difficulties. Otherwise, both schemes have the desired property that the sign of integers can be reversed by taking the complement of its binary representation, but two's complement has an exception – the lowest negative, as can be seen in the tables.[4]

History

edit

The method of complements had long been used to perform subtraction in decimal adding machines and mechanical calculators. John von Neumann suggested use of two's complement binary representation in his 1945 First Draft of a Report on the EDVAC proposal for an electronic stored-program digital computer.[5] The 1949 EDSAC, which was inspired by the First Draft, used two's complement representation of negative binary integers.

Many early computers, including the CDC 6600, the LINC, the PDP-1, and the UNIVAC 1107, use ones' complement notation; the descendants of the UNIVAC 1107, the UNIVAC 1100/2200 series, continued to do so. The IBM 700/7000 series scientific machines use sign/magnitude notation, except for the index registers which are two's complement. Early commercial computers storing negative values in two's complement form include the English Electric DEUCE (1955) and the Digital Equipment Corporation PDP-5 (1963) and PDP-6 (1964). The System/360, introduced in 1964 by IBM, then the dominant player in the computer industry, made two's complement the most widely used binary representation in the computer industry. The first minicomputer, the PDP-8 introduced in 1965, uses two's complement arithmetic, as do the 1969 Data General Nova, the 1970 PDP-11, and almost all subsequent minicomputers and microcomputers.

Converting from two's complement representation

edit

A two's-complement number system encodes positive and negative numbers in a binary number representation. The weight of each bit is a power of two, except for the most significant bit, whose weight is the negative of the corresponding power of two.

The value w of an N-bit integer   is given by the following formula:

 

The most significant bit determines the sign of the number and is sometimes called the sign bit. Unlike in sign-and-magnitude representation, the sign bit also has the weight ?(2N???1) shown above. Using N bits, all integers from ?(2N???1) to 2N???1 ? 1 can be represented.

Converting to two's complement representation

edit

In two's complement notation, a non-negative number is represented by its ordinary binary representation; in this case, the most significant bit is 0. Though, the range of numbers represented is not the same as with unsigned binary numbers. For example, an 8-bit unsigned number can represent the values 0 to 255 (11111111). However a two's complement 8-bit number can only represent non-negative integers from 0 to 127 (01111111), because the rest of the bit combinations with the most significant bit as '1' represent the negative integers ?1 to ?128.

The two's complement operation is the additive inverse operation, so negative numbers are represented by the two's complement of the absolute value.

From the ones' complement

edit

To get the two's complement of a negative binary number, all bits are inverted, or "flipped", by using the bitwise NOT operation; the value of 1 is then added to the resulting value, ignoring the overflow which occurs when taking the two's complement of 0.

For example, using 1 byte (=8 bits), the decimal number 5 is represented by

0000 01012

The most significant bit (the leftmost bit in this case) is 0, so the pattern represents a non-negative value. To convert to ?5 in two's-complement notation, first, all bits are inverted, that is: 0 becomes 1 and 1 becomes 0:

1111 10102

At this point, the representation is the ones' complement of the decimal value ?5. To obtain the two's complement, 1 is added to the result, giving:

1111 10112

The result is a signed binary number representing the decimal value ?5 in two's-complement form. The most significant bit is 1, signifying that the value represented is negative.

Alternatively, instead of adding 1 after inverting a positive binary number, 1 can be subtracted from the number before it is inverted. The two methods can easily be shown to be equivalent. The inversion (ones' complement) of   equals  , so the sum of the inversion and 1 equals    , which equals the two's complement of   as expected. The inversion of   equals    , identical to the previous equation. Essentially, the subtraction inherent in the inversion operation changes the ?1 added to   before the inversion into +1 added after the inversion. This alternate subtract-and-invert algorithm to form a two's complement can sometimes be advantageous in computer programming or hardware design, for example where the subtraction of 1 can be obtained for free by incorporating it into an earlier operation.[6]

The two's complement of a negative number is the corresponding positive value, except in the special case of the most negative number. For example, inverting the bits of ?5 (above) gives:

0000 01002

And adding one gives the final value:

0000 01012

The two's complement of the most negative number representable (e.g. a one as the most-significant bit and all other bits zero) is itself. Hence, there is an 'extra' negative number for which two's complement does not give the negation, see § Most negative number below.

The case for the most negative number is one of only two special cases. The other special case is for zero, the two's complement of which is zero: inverting gives all ones, and adding one changes the ones back to zeros (since the overflow is ignored). Mathematically, in the two's complement system of signed integers (which represents the negative of each number as its two's complement), this is obviously correct: the negative of 0 is in fact 0 ( ). This zero case also makes sense by the definition of two's complements: by that definition, the two's complement of zero would be  , but in   bits, all values are taken modulo  , and  mod  . In other words, the two's complement of 0 in   bits is (by definition) a single 1 bit followed by   zeros, but the 1 gets truncated, leaving 0.[7]

In summary, the two's complement of any number, either positive, negative, or zero, can be computed in the same ways. In two's complement signed integer representation, the two's complement of any integer is equal to -1 times that integer, except for the most negative integer representable in the given number of bits  , i.e. the integer  , the two's complement of which is itself (still negative).

Subtraction from 2N

edit

The sum of a number and its ones' complement is an N-bit word with all 1 bits, which is (reading as an unsigned binary number) 2N ? 1. Then adding a number to its two's complement results in the N lowest bits set to 0 and the carry bit 1, where the latter has the weight (reading it as an unsigned binary number) of 2N. Hence, in the unsigned binary arithmetic the value of two's-complement negative number x* of a positive x satisfies the equality x* = 2N ? x.[a]

For example, to find the four-bit representation of ?5 (subscripts denote the base of the representation):

x = 510 therefore x = 01012

Hence, with N = 4:

x* = 2N ? x = 24 ? 510 = 1610 ? 510 = 100002 ? 01012 = 10112

The calculation can be done entirely in base 10, converting to base 2 at the end:

x* = 2N ? x = 24 ? 510 = 1110 = 10112

Working from LSB towards MSB

edit

A shortcut to manually convert a binary number into its two's complement is to start at the least significant bit (LSB), and copy all the zeros, working from LSB toward the most significant bit (MSB) until the first 1 is reached; then copy that 1, and flip all the remaining bits (Leave the MSB as a 1 if the initial number was in sign-and-magnitude representation). This shortcut allows a person to convert a number to its two's complement without first forming its ones' complement. For example: in two's complement representation, the negation of "0011 1100" is "1100 0100", where the underlined digits were unchanged by the copying operation (while the rest of the digits were flipped).

In computer circuitry, this method is no faster than the "complement and add one" method; both methods require working sequentially from right to left, propagating logic changes. The method of complementing and adding one can be sped up by a standard carry look-ahead adder circuit; the LSB towards MSB method can be sped up by a similar logic transformation.

Sign extension

edit
Sign-bit repetition in 7- and 8-bit integers using two's complement
Decimal 7-bit notation 8-bit notation
?42? 1010110 1101 0110
42? 0101010 0010 1010

When turning a two's-complement number with a certain number of bits into one with more bits (e.g., when copying from a one-byte variable to a two-byte variable), the most-significant bit must be repeated in all the extra bits. Some processors do this in a single instruction; on other processors, a conditional must be used followed by code to set the relevant bits or bytes.

Similarly, when a number is shifted to the right, the most-significant bit, which contains the sign information, must be maintained. However, when shifted to the left, a bit is shifted out. These rules preserve the common semantics that left shifts multiply the number by two and right shifts divide the number by two. However, if the most-significant bit changes from 0 to 1 (and vice versa), overflow is said to occur in the case that the value represents a signed integer.

Both shifting and doubling the precision are important for some multiplication algorithms. Note that unlike addition and subtraction, width extension and right shifting are done differently for signed and unsigned numbers.

Most negative number

edit

With only one exception, starting with any number in two's-complement representation, if all the bits are flipped and 1 added, the two's-complement representation of the negative of that number is obtained. Positive 12 becomes negative 12, positive 5 becomes negative 5, zero becomes zero(+overflow), etc.

The two's complement of ?128
?128 1000 0000
invert bits 0111 1111
add one 1000 0000
Result is the same 8 bit binary number.

Taking the two's complement (negation) of the minimum number in the range will not have the desired effect of negating the number. For example, the two's complement of ?128 in an eight-bit system is ?128 , as shown in the table to the right. Although the expected result from negating ?128 is +128 , there is no representation of +128 with an eight bit two's complement system and thus it is in fact impossible to represent the negation. Note that the two's complement being the same number is detected as an overflow condition since there was a carry into but not out of the most-significant bit.

Having a nonzero number equal to its own negation is forced by the fact that zero is its own negation, and that the total number of numbers is even. Proof: there are 2^n ? 1 nonzero numbers (an odd number). Negation would partition the nonzero numbers into sets of size 2, but this would result in the set of nonzero numbers having even cardinality. So at least one of the sets has size 1, i.e., a nonzero number is its own negation.

The presence of the most negative number can lead to unexpected programming bugs where the result has an unexpected sign, or leads to an unexpected overflow exception, or leads to completely strange behaviors. For example,

  • the unary negation operator may not change the sign of a nonzero number. e.g., ?(?128)  ?  ?128   (where "?" is read as "becomes").
  • an implementation of absolute value may return a negative number;[8] e.g.,   abs(?128)  ?  ?128 .
  • Likewise, multiplication by ?1 may fail to function as expected; e.g.,   (?128) × (?1)  ?  ?128 .
  • Division by ?1 may cause an exception (like that caused by dividing by 0 );[9] even calculating the remainder (or modulo) by ?1 can trigger this exception;[10] e.g., (?128) ÷ (?1)  ?  [CRASH] ,   (?128) % (?1)  ?  [CRASH] .

In the C and C++ programming languages, the above behaviours are undefined and not only may they return strange results, but the compiler is free to assume that the programmer has ensured that undefined numerical operations never happen, and make inferences from that assumption.[10] This enables a number of optimizations, but also leads to a number of strange bugs in programs with these undefined calculations.

This most negative number in two's complement is sometimes called "the weird number", because it is the only exception.[11][12] Although the number is an exception, it is a valid number in regular two's complement systems. All arithmetic operations work with it both as an operand and (unless there was an overflow) a result.

Why it works

edit

Given a set of all possible N-bit values, we can assign the lower (by the binary value) half to be the integers from 0 to (2N???1 ? 1) inclusive and the upper half to be ?2N???1 to ?1 inclusive. The upper half (again, by the binary value) can be used to represent negative integers from ?2N???1 to ?1 because, under addition modulo 2N they behave the same way as those negative integers. That is to say that, because i + j mod 2N = i + (j + 2N) mod 2N, any value in the set {?j + k?2N | k is an integer?}? can be used in place of j.[13]

For example, with eight bits, the unsigned bytes are 0 to 255. Subtracting 256 from the top half (128 to 255) yields the signed bytes ?128 to ?1.

The relationship to two's complement is realised by noting that 256 = 255 + 1, and (255 ? x) is the ones' complement of x.

Some special numbers to note
Decimal Binary (8-bit)
127? 0111 1111
64? 0100 0000
1 ? 0000 0001
0 ? 0000 0000
?1? 1111 1111
?64? 1100 0000
?127? 1000 0001
?128? 1000 0000

Example

edit

For example, an 8 bit number can only represent every integer from ?128. to 127., inclusive, since (28???1 = 128.). ?95. modulo 256. is equivalent to 161. since

?95. + 256.
= ?95. + 255. + 1
= 255. ? 95. + 1
= 160. + 1.
= 161.
   1111 1111                       255.
 ? 0101 1111                     ?  95.
 ===========                     =====
   1010 0000  (ones' complement)   160.
 +         1                     +   1
 ===========                     =====
   1010 0001  (two's complement)   161.
Two's complement 4 bit integer values
Two's complement Decimal
0111 7.?
0110 6.?
0101 5.?
0100 4.?
0011 3.?
0010 2.?
0001 1.?
0000 0.?
1111 ?1.?
1110 ?2.?
1101 ?3.?
1100 ?4.?
1011 ?5.?
1010 ?6.?
1001 ?7.?
1000 ?8.?

Fundamentally, the system represents negative integers by counting backward and wrapping around. The boundary between positive and negative numbers is arbitrary, but by convention all negative numbers have a left-most bit (most significant bit) of one. Therefore, the most positive four-bit number is 0111 (7.) and the most negative is 1000 (?8.). Because of the use of the left-most bit as the sign bit, the absolute value of the most negative number (|?8.| = 8.) is too large to represent. Negating a two's complement number is simple: Invert all the bits and add one to the result. For example, negating 1111, we get 0000 + 1 = 1. Therefore, 1111 in binary must represent ?1 in decimal.[14]

The system is useful in simplifying the implementation of arithmetic on computer hardware. Adding 0011 (3.) to 1111 (?1.) at first seems to give the incorrect answer of 10010. However, the hardware can simply ignore the left-most bit to give the correct answer of 0010 (2.). Overflow checks still must exist to catch operations such as summing 0100 and 0100.

The system therefore allows addition of negative operands without a subtraction circuit or a circuit that detects the sign of a number. Moreover, that addition circuit can also perform subtraction by taking the two's complement of a number (see below), which only requires an additional cycle or its own adder circuit. To perform this, the circuit merely operates as if there were an extra left-most bit of 1.

Arithmetic operations

edit

Addition

edit

Adding two's complement numbers requires no special processing even if the operands have opposite signs; the sign of the result is determined automatically. For example, adding 15 and ?5:

   0000 1111  (15)
 + 1111 1011  (?5)
 ===========
   0000 1010  (10)

Or the computation of 5 ? 15 = 5 + (?15):

   0000 0101  (  5)
 + 1111 0001  (?15)
 ===========
   1111 0110  (?10)

This process depends upon restricting to 8 bits of precision; a carry to the (nonexistent) 9th most significant bit is ignored, resulting in the arithmetically correct result of 1010.

The last two bits of the carry row (reading right-to-left) contain vital information: whether the calculation resulted in an arithmetic overflow, a number too large for the binary system to represent (in this case greater than 8 bits). An overflow condition exists when these last two bits are different from one another. As mentioned above, the sign of the number is encoded in the MSB of the result.

In other terms, if the left two carry bits (the ones on the far left of the top row in these examples) are both 1s or both 0s, the result is valid; if the left two carry bits are "1 0" or "0 1", a sign overflow has occurred. Conveniently, an XOR operation on these two bits can quickly determine if an overflow condition exists. As an example, consider the signed 4-bit addition of 7 and 3:

  0111   (carry)
   0111  (7)
 + 0011  (3)
 ======
   1010  (?6)  invalid!

In this case, the far left two (MSB) carry bits are "01", which means there was a two's-complement addition overflow. That is, 10102 = 1010 is outside the permitted range of ?8 to 7. The result would be correct if treated as unsigned integer.

In general, any two N-bit numbers may be added without overflow, by first sign-extending both of them to N?+?1 bits, and then adding as above. The N?+?1 bits result is large enough to represent any possible sum (N = 5 two's complement can represent values in the range ?16 to 15) so overflow will never occur. It is then possible, if desired, to 'truncate' the result back to N bits while preserving the value if and only if the discarded bit is a proper sign extension of the retained result bits. This provides another method of detecting overflow – which is equivalent to the method of comparing the carry bits – but which may be easier to implement in some situations, because it does not require access to the internals of the addition.

Subtraction

edit

Computers usually use the method of complements to implement subtraction. Using complements for subtraction is closely related to using complements for representing negative numbers, since the combination allows all signs of operands and results; direct subtraction works with two's-complement numbers as well. Like addition, the advantage of using two's complement is the elimination of examining the signs of the operands to determine whether addition or subtraction is needed. For example, subtracting ?5 from 15 is really adding 5 to 15, but this is hidden by the two's-complement representation:

  11110 000   (borrow)
   0000 1111  (15)
 ? 1111 1011  (?5)
 ===========
   0001 0100  (20)

Overflow is detected the same way as for addition, by examining the two leftmost (most significant) bits of the borrows; overflow has occurred if they are different.

Another example is a subtraction operation where the result is negative: 15 ? 35 = ?20:

  11100 000   (borrow)
   0000 1111  (15)
 ? 0010 0011  (35)
 ===========
   1110 1100  (?20)

As for addition, overflow in subtraction may be avoided (or detected after the operation) by first sign-extending both inputs by an extra bit.

Multiplication

edit

The product of two N-bit numbers requires 2N bits to contain all possible values.[15]

If the precision of the two operands using two's complement is doubled before the multiplication, direct multiplication (discarding any excess bits beyond that precision) will provide the correct result.[16] For example, take 6 × (?5) = ?30. First, the precision is extended from four bits to eight. Then the numbers are multiplied, discarding the bits beyond the eighth bit (as shown by "x"):

     00000110  (6)
 *   11111011  (?5)
 ============
          110
         1100
        00000
       110000
      1100000
     11000000
    x10000000
 + xx00000000
 ============
   xx11100010

This is very inefficient; by doubling the precision ahead of time, all additions must be double-precision and at least twice as many partial products are needed than for the more efficient algorithms actually implemented in computers. Some multiplication algorithms are designed for two's complement, notably Booth's multiplication algorithm. Methods for multiplying sign-magnitude numbers do not work with two's-complement numbers without adaptation. There is not usually a problem when the multiplicand (the one being repeatedly added to form the product) is negative; the issue is setting the initial bits of the product correctly when the multiplier is negative. Two methods for adapting algorithms to handle two's-complement numbers are common:

  • First check to see if the multiplier is negative. If so, negate (i.e., take the two's complement of) both operands before multiplying. The multiplier will then be positive so the algorithm will work. Because both operands are negated, the result will still have the correct sign.
  • Subtract the partial product resulting from the MSB (pseudo sign bit) instead of adding it like the other partial products. This method requires the multiplicand's sign bit to be extended by one position, being preserved during the shift right actions.[17]

As an example of the second method, take the common add-and-shift algorithm for multiplication. Instead of shifting partial products to the left as is done with pencil and paper, the accumulated product is shifted right, into a second register that will eventually hold the least significant half of the product. Since the least significant bits are not changed once they are calculated, the additions can be single precision, accumulating in the register that will eventually hold the most significant half of the product. In the following example, again multiplying 6 by ?5, the two registers and the extended sign bit are separated by "|":

  0 0110  (6)  (multiplicand with extended sign bit)
  × 1011 (?5)  (multiplier)
  =|====|====
  0|0110|0000  (first partial product (rightmost bit is 1))
  0|0011|0000  (shift right, preserving extended sign bit)
  0|1001|0000  (add second partial product (next bit is 1))
  0|0100|1000  (shift right, preserving extended sign bit)
  0|0100|1000  (add third partial product: 0 so no change)
  0|0010|0100  (shift right, preserving extended sign bit)
  1|1100|0100  (subtract last partial product since it's from sign bit)
  1|1110|0010  (shift right, preserving extended sign bit)
   |1110|0010  (discard extended sign bit, giving the final answer, ?30)

Comparison (ordering)

edit

Comparison is often implemented with a dummy subtraction, where the flags in the computer's status register are checked, but the main result is ignored. The zero flag indicates if two values compared equal. If the exclusive-or of the sign and overflow flags is 1, the subtraction result was less than zero, otherwise the result was zero or greater. These checks are often implemented in computers in conditional branch instructions.

Unsigned binary numbers can be ordered by a simple lexicographic ordering, where the bit value 0 is defined as less than the bit value 1. For two's complement values, the meaning of the most significant bit is reversed (i.e. 1 is less than 0).

The following algorithm (for an n-bit two's complement architecture) sets the result register R to ?1 if A < B, to +1 if A > B, and to 0 if A and B are equal:

// reversed comparison of the sign bit

if A(n-1) = 0 and B(n-1) = 1 then
    return +1;
else if A(n-1) = 1 and B(n-1) = 0 then
    return -1
end;
 
// comparison of remaining bits

for i := n-2 downto 0 do begin
    if A(i) = 0 and B(i) = 1 then
        return -1
    else if A(i) = 1 and B(i) = 0 then
        return +1 
    end
end
 
return 0

Two's complement and 2-adic numbers

edit

In a classic HAKMEM published by the MIT AI Lab in 1972, Bill Gosper noted that whether or not a machine's internal representation was two's-complement could be determined by summing the successive powers of two. In a flight of fancy, he noted that the result of doing this algebraically indicated that "algebra is run on a machine (the universe) which is two's-complement."[18]

Gosper's end conclusion is not necessarily meant to be taken seriously, and it is akin to a mathematical joke. The critical step is "...110 = ...111 ? 1", i.e., "2X = X ? 1", and thus X = ...111 = ?1. This presupposes a method by which an infinite string of 1s is considered a number, which requires an extension of the finite place-value concepts in elementary arithmetic. It is meaningful either as part of a two's-complement notation for all integers, as a typical 2-adic number, or even as one of the generalized sums defined for the divergent series of real numbers 1 + 2 + 4 + 8 + ?.[19] Digital arithmetic circuits, idealized to operate with infinite (extending to positive powers of 2) bit strings, produce 2-adic addition and multiplication compatible with two's complement representation.[20] Continuity of binary arithmetical and bitwise operations in 2-adic metric also has some use in cryptography.[21]

Fraction conversion

edit

To convert a number with a fractional part, such as .0101, one must convert starting from right to left the 1s to decimal as in a normal conversion. In this example 0101 is equal to 5 in decimal. Each digit after the floating point represents a fraction where the denominator is a multiplier of 2. So, the first is 1/2, the second is 1/4 and so on. Having already calculated the decimal value as mentioned above, only the denominator of the LSB (LSB = starting from right) is used. The final result of this conversion is 5/16.

For instance, having the floating value of .0110 for this method to work, one should not consider the last 0 from the right. Hence, instead of calculating the decimal value for 0110, we calculate the value 011, which is 3 in decimal (by leaving the 0 in the end, the result would have been 6, together with the denominator 24 = 16, which reduces to 3/8). The denominator is 8, giving a final result of 3/8.

See also

edit

Notes

edit
  1. ^ For x = 0 we have 2N ? 0 = 2N, which is equivalent to 0* = 0 modulo 2N (i.e. after restricting to N least significant bits).

References

edit
  1. ^ E.g. "Signed integers are two's complement binary values that can be used to represent both positive and negative integer values", Section 4.2.1 in Intel 64 and IA-32 Architectures Software Developer's Manual, Volume 1: Basic Architecture, November 2006
  2. ^ Bergel, Alexandre; Cassou, Damien; Ducasse, Stéphane; Laval, Jannik (2013). Deep into Pharo (PDF). p. 337.
  3. ^ "Two's Complement" (PDF). University of Rochester Academic Success Center.
  4. ^ Lilja, David J.; Sapatnekar, Sachin S. (2005). Designing Digital Computer Systems with Verilog. Cambridge University Press. ISBN 9780521828666.
  5. ^ von Neumann, John (1945), First Draft of a Report on the EDVAC (PDF), retrieved February 20, 2021
  6. ^ ... e.g. by reducing an added constant by 1, increasing a subtracted constant by 1, or setting the carry/borrow flag before a subtract-with-borrow operation. For example, to compute  , instead of adding 4 to  , inverting the result, and then adding 1, one can merely add 3 (= 4 ? 1) to   and then invert the result. (Of course, it is also an option, using the invert-and-add scheme, to invert   first and then subtract 3 [equivalent to adding ?3 = ?4 + 1].)
  7. ^ Zero is the one value which when added to its two's complement, using machine (modular) binary arithmetic, does not sum to  , but observe that in arithmetic modulo  ,   is congruent to  .
  8. ^ "Math". API specification. Java Platform SE 7.
  9. ^ Regehr, John (2013). "Nobody expects the Spanish inquisition, or INT_MIN to be divided by ?1". Regehr.org (blog).
  10. ^ a b Seacord, Robert C. (2020). "Ensure that operations on signed integers do not result in overflow". Rule INT32-C. wiki.sei.cmu.edu. SEI CERT C Coding Standard.
  11. ^ Affeldt, Reynald & Marti, Nicolas (2006). Formal verification of arithmetic functions in SmartMIPS Assembly (PDF) (Report). Archived from the original (PDF) on 2025-08-06.
  12. ^ Harris, David Money; Harris, Sarah L. (2007). Digital Design and Computer Architecture. Morgan Kaufmann. p. 18. ISBN 978-0-08-054706-0 – via Google Books.
  13. ^ "3.9. Two's Complement". Chapter 3. Data Representation. cs.uwm.edu. 2025-08-06. Archived from the original on 31 October 2013. Retrieved 2025-08-06.
  14. ^ Finley, Thomas (April 2000). "Two's Complement". Computer Science. Class notes for CS 104. Ithaca, New York: Cornell University. Retrieved 2025-08-06.
  15. ^ Bruno Paillard. An Introduction To Digital Signal Processors, Sec. 6.4.2. Génie électrique et informatique Report, Université de Sherbrooke, April 2004.
  16. ^ Karen Miller (August 24, 2007). "Two's Complement Multiplication". cs.wisc.edu. Archived from the original on February 13, 2015. Retrieved April 13, 2015.
  17. ^ Wakerly, John F. (2000). Digital Design Principles & Practices (3rd ed.). Prentice Hall. p. 47. ISBN 0-13-769191-2.
  18. ^ "Programming Hacks". HAKMEM. ITEM 154 (Gosper). Archived from the original on 2025-08-06.
  19. ^ For the summation of 1 + 2 + 4 + 8 + ? without recourse to the 2-adic metric, see Hardy, G. H. (1949). Divergent Series. Clarendon Press. pp. 7–10. LCC QA295 .H29 1967.
  20. ^ Vuillemin, Jean (1993). "Chapter 7". On circuits and numbers (PDF). Paris: Digital Equipment Corporation. p. 19. Retrieved 2025-08-06. See especially chapter 7.3 for multiplication.
  21. ^ Anashin, Vladimir; Bogdanov, Andrey; Kizhvatov, Ilya (2007). "ABC Stream Cipher". Russian State University for the Humanities. Retrieved 24 January 2012.

Further reading

edit
edit
玻璃体切除后对眼睛有什么影响 晚上老咳嗽是什么原因 生育登记有什么用 皇太后是皇上的什么人 egc是什么意思
尿白细胞加减什么意思 矿物油是什么 脱线是什么意思 大腿根部内侧瘙痒用什么药膏 截根疗法是什么
南柯一梦是什么意思 牛油果不能和什么一起吃 咳嗽有绿痰是什么原因 昀是什么意思 脚后跟疼为什么
红细胞压积偏高是什么原因 香蕉补什么 弥是什么意思 15天来一次月经是什么原因 胃肠型感冒吃什么药
什么是肌酐hcv8jop0ns4r.cn 梦见死人复活什么预兆hcv9jop2ns7r.cn cs和cf有什么区别hcv9jop1ns8r.cn 银杏树的叶子像什么hcv9jop3ns0r.cn 手刃是什么意思hcv7jop6ns0r.cn
黄芪搭配什么不上火hcv8jop7ns6r.cn 1940年出生属什么生肖hcv9jop4ns4r.cn 舌苔白厚腻吃什么药见效快hcv8jop6ns4r.cn 珍珠五行属什么hcv9jop1ns7r.cn tbs和tct有什么区别xinmaowt.com
什么是公职人员bjhyzcsm.com 牙齿发麻是什么原因hcv8jop3ns5r.cn 火命人适合什么颜色hcv9jop6ns4r.cn 鼻子两侧毛孔粗大是什么原因造成的hcv9jop2ns1r.cn 咳嗽吃什么zhongyiyatai.com
淀粉和面粉有什么区别hcv7jop7ns3r.cn 水痘疫苗叫什么hcv9jop7ns5r.cn 吕布的武器是什么hcv9jop7ns1r.cn 韩红是什么民族bysq.com 孕期腰疼是什么原因hcv8jop4ns0r.cn
百度