肝火旺盛是什么原因引起的| 猪大肠炒什么好吃| 宝宝吃的益生菌什么牌子好| 阿胶什么时候吃效果最好| 女性尿道出血是什么原因引起的| 鱼腥草不能和什么一起吃| 牙冠是什么意思| 三分三是什么药| 笑口常开是什么生肖| 玉女心经是什么意思| 脚肿什么原因引起的| 备孕要注意些什么| 什么时间入伏| 左肾尿盐结晶是什么意思| 冰鱼是什么鱼| 什么是脑中风| 应收账款在贷方表示什么| 低血糖会出现什么症状| 画蛇添足告诉我们什么道理| 肛塞有什么作用| 松香对人体有什么危害| 空调送风模式有什么用| 吃完就拉是什么原因| rj什么意思| 表现优异是什么意思| 嘴唇起水泡是什么原因| 三点水加亘念什么| 嘌呤是什么物质| 牡丹花什么时候开花| 中书舍人是什么官职| 哺乳期可以吃什么感冒药| 嘴角开裂是什么原因| 为什么右眼一直跳| 制服是什么意思| 女生下体长什么样子| 肺结核早期有什么症状| 谷维素是治疗什么的| 急性尿路感染吃什么药| 夏字五行属什么| 什么叫不动产| 一月份生日是什么星座| 梦见黑山羊是什么预兆| 鸽子和什么一起炖汤最有营养| 鼻窦炎用什么药效果最好| 解脲脲原体阳性是什么病| 血小板计数偏低是什么意思| holly是什么意思| 凌晨十二点是什么时辰| 后背刺痛什么原因引起的| 贫血吃什么药效果好| 石斛与什么搭配最好| 什么时间艾灸最好| 什么牌子的电饭锅好| 剁椒能做什么菜| 吃什么东西补气血| 阴性什么意思| 钾高吃什么可以降下来| 电瓶车充不进电是什么原因| 苦瓜泡水喝有什么好处| 外面下着雨犹如我心血在滴什么歌| 什么笑什么笑| 谷丙转氨酶偏低是什么意思| 神经官能症吃什么药| 女性肾虚是什么原因导致的| 梦见抓鸟是什么征兆| 感统训练是什么| 玄机是什么意思| 拖累是什么意思| 什么叫通分| 拉黑色的屎是什么原因| 6月6是什么节日| TB是什么缩写| 吃什么养肾| 维生素k是什么| 扁平比是什么意思| 抑郁症吃什么食物好| 什么是手足口病| 澳门打车用什么软件| 酸辣土豆丝用什么醋| 钱是什么单位| 不安腿是什么症状| 怀孕的最佳时间是什么时候| 肛肠科属于什么科| 早孕有什么反应| 身体肿是什么原因引起的| 口契是什么字| 拉不出大便吃什么药| 乙肝表面抗原携带者什么意思| 九什么一毛| 汕头有什么好玩的景点| pioneer是什么牌子| 什么的风筝| 一个夸一个瓜念什么| 什么的温度| 范冰冰和洪金宝什么关系| 夏天盖什么被子最舒服| 从容的反义词是什么| 蝉吃什么东西| 家的意义是什么| 什么惊什么怪| 右边腰疼是什么原因| 头疼呕吐是什么原因| 为什么吐后反而舒服了| 燃脂是什么意思| gin是什么意思| 侏罗纪是什么意思| 感冒吃什么食物比较好| 50岁用什么牌子化妆品好| 两个火念什么| 保肝降酶药首选什么药| 疝外科是治什么病的| 驿站是什么意思| 补体c1q偏高说明什么| 黄精吃了有什么好处| 羽毛球鞋什么牌子好| 周围神经病是什么症状| 芙蓉是什么花| 豪五行属什么| 小苏打和柠檬酸反应产生什么| 赏脸是什么意思| msm是什么药| 屋后有坟有什么影响吗| 白带发黄是什么原因| 赤小豆有什么作用| 全身水肿是什么原因引起的| 练八段锦有什么好处| 现在什么最赚钱| 巨蟹女跟什么星座最配| 纳米是什么东西| 孕初期需要注意些什么| 水逆退散是什么意思| 排骨炒什么配菜好吃| 公主和郡主有什么区别| 什么年马月| 二道贩子是什么意思| 拉肚子吃什么药最好| 火龙果是什么颜色| 脱发去医院挂什么科| 陪跑什么意思| 精神内科一般检查什么| 大运正官是什么意思| 干贝是什么| 7月6日是什么日子| 什么人不能喝绿豆汤| 戒指上的s925是什么意思| 脖子上长小肉疙瘩是什么原因| 十指纤纤尽夸巧是什么生肖| 三文鱼又叫什么鱼| 眉尾长痘是什么原因| 中午十二点是什么时辰| 懒趴是什么意思| 孕妇吃辣椒对胎儿有什么影响| 上善若水是什么意思| 小排畸什么时候做| 衣原体阳性是什么意思| 检查喉咙挂什么科| 越什么越什么的词语| 什么人容易得帕金森病| 做梦梦见掉头发是什么意思| 榴莲什么季节成熟| 甲亢是什么症状| 唐字五行属什么| 痰中带血吃什么药| 为什么肚子上会长毛| 过期化妆品属于什么垃圾| 双侧胸膜局限性增厚是什么意思| 霉菌性炎症用什么药效果最好| 感冒发烧不能吃什么食物| 阴虱是什么原因引起的| 擦什么能阻止毛发生长| 转氨酶高挂什么科| 512是什么星座| dcr是什么意思| 什么叫排比句| 潮喷是什么感觉| 心脏供血不足是什么原因引起的| 吉利丁片是什么东西| 睡觉梦到蛇是什么意思| 不停的出汗是什么原因| 开业送什么好| 大泽土是什么生肖| 超敏c反应蛋白高是什么意思| 白癜风早期症状是什么| 什么是三宝| 心律不齐吃什么药最快| 雌雄是什么意思| 白头发是缺什么维生素| 梦到自己的妈妈死了是什么意思| 躯体化障碍是什么病| 灏是什么意思| 嫑怹是什么意思| 苋菜什么人不能吃| 吃阿司匹林有什么副作用| 为什么水不能燃烧| 下肢血栓吃什么药| 坐骨神经吃什么药效果最好| 手抖是什么病的症状| 怀孕白细胞高是什么原因| 死刑是什么意思| 一厢情愿指什么生肖| 布施什么意思| 暗无天日是什么意思| 猪油用什么容器装好| 11月出生是什么星座| 三头六臂指什么生肖| 女生自慰是什么感觉| 什么习习| 跳大神是什么意思| 伊朗是什么教派| 胸闷什么原因| 四川古代叫什么| 霉菌感染用什么药好| msa是什么| 得了便宜还卖乖是什么意思| 小孩睡觉磨牙是什么原因引起的| 淀粉样变性是什么病| 火加木是什么字| 反应性细胞改变是什么意思| 小孩白头发是什么原因引起的| 肾结石有什么影响| 新生儿超敏c反应蛋白高说明什么| 腱鞘炎吃什么药好使| 三观不合指的是什么| 胃疼吐酸水是什么原因| 仁义道德是什么意思| 海瓜子是什么| 臭菜是什么菜| 1972年属鼠五行属什么| 板鞋配什么裤子好看| 政协委员是什么级别| 钓黑鱼用什么饵最好| 什么是丛林法则| 高丽参适合什么人吃| 早上起床吐痰带血是什么原因| 小钢炮是什么意思| 漫反射是什么意思| 右附件区囊肿是什么意思| 蛋糕裙适合什么人穿| 偷梁换柱是什么意思| nad是什么| 尿酸盐结晶是什么意思| 溺爱什么意思| 歧途什么意思| 劳伦拉夫属于什么档次| 阳虚有什么症状和表现| 诗韵是什么意思| 睡眠质量不好挂什么科| 闲云野鹤是什么意思| 什么宠物好养又干净| 好是什么意思| 饭后胃胀吃什么药| o型血和a型血生的孩子是什么血型| 保妇康栓治疗什么妇科病| 舌头有红点是什么原因| 随遇而安是什么生肖| 头里面有肿瘤有什么症状| 血糖高早餐吃什么最好| 刷存在感是什么意思| 什么是耽美| 有血流信号是什么意思| 粽子叶是什么植物的叶子| 益生元和益生菌有什么区别| 灰指甲是什么样的图片| 胖头鱼又叫什么鱼| 百度

杨利伟、景海鹏 这些宇航员不仅能上天 还能上春

百度 我们建议把相关的行政处罚权集中到一个部门,避免再出现你推我我推你的情况。

In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is proved to be impossible to construct an algorithm that always leads to a correct yes-or-no answer. The halting problem is an example: it can be proven that there is no algorithm that correctly determines whether an arbitrary program eventually halts when run.[1]

Background

edit

A decision problem is a question which, for every input in some infinite set of inputs, requires a "yes" or "no" answer.[2] Those inputs can be numbers (for example, the decision problem "is the input a prime number?") or values of some other kind, such as strings of a formal language.

The formal representation of a decision problem is a subset of the natural numbers. For decision problems on natural numbers, the set consists of those numbers that the decision problem answers "yes" to. For example, the decision problem "is the input even?" is formalized as the set of even numbers. A decision problem whose input consists of strings or more complex values is formalized as the set of numbers that, via a specific G?del numbering, correspond to inputs that satisfy the decision problem's criteria.

A decision problem A is called decidable or effectively solvable if the formalized set of A is a recursive set. Otherwise, A is called undecidable. A problem is called partially decidable, semi-decidable, solvable, or provable if A is a recursively enumerable set.[nb 1]

Example: the halting problem in computability theory

edit

In computability theory, the halting problem is a decision problem which can be stated as follows:

Given the description of an arbitrary program and a finite input, decide whether the program finishes running or will run forever.

Alan Turing proved in 1936 that a general algorithm running on a Turing machine that solves the halting problem for all possible program-input pairs necessarily cannot exist. Hence, the halting problem is undecidable for Turing machines.

Relationship with G?del's incompleteness theorem

edit

The concepts raised by G?del's incompleteness theorems are very similar to those raised by the halting problem, and the proofs are quite similar. In fact, a weaker form of the First Incompleteness Theorem is an easy consequence of the undecidability of the halting problem. This weaker form differs from the standard statement of the incompleteness theorem by asserting that an effective axiomatization of the natural numbers that is both complete and sound is impossible. The "sound" part is the weakening: it means that we require the axiomatic system in question to prove only true statements about natural numbers. Since soundness implies consistency, this weaker form can be seen as a corollary of the strong form. It is important to observe that the statement of the standard form of G?del's First Incompleteness Theorem is completely unconcerned with the truth value of a statement, but only concerns the issue of whether it is possible to find it through a mathematical proof.

The weaker form of the theorem can be proved from the undecidability of the halting problem as follows.[3] Assume that we have a sound (and hence consistent) and complete effective axiomatization of all true first-order logic statements about natural numbers. Then we can build an algorithm that enumerates all these statements. This means that there is an algorithm N(n) that, given a natural number n, computes a true first-order logic statement about natural numbers, and that for all true statements, there is at least one n such that N(n) yields that statement. Now suppose we want to decide if the algorithm with representation a halts on input i. We know that this statement can be expressed with a first-order logic statement, say H(a, i). Since the axiomatization is complete it follows that either there is an n such that N(n) = H(a, i) or there is an n such that N(n) = ? H(a, i). So if we iterate over all n until we either find H(a, i) or its negation, we will always halt, and furthermore, the answer it gives us will be true (by soundness). This means that this gives us an algorithm to decide the halting problem. Since we know that there cannot be such an algorithm, it follows that the assumption that there is a sound and complete effective axiomatization of all true first-order logic statements about natural numbers must be false.

Examples of undecidable problems

edit

Undecidable problems can be related to different topics, such as logic, abstract machines or topology. Since there are uncountably many undecidable problems,[nb 2] any list, even one of infinite length, is necessarily incomplete.

Examples of undecidable statements

edit

There are two distinct senses of the word "undecidable" in contemporary use. The first of these is the sense used in relation to G?del's theorems, that of a statement being neither provable nor refutable in a specified deductive system. The second sense is used in relation to computability theory and applies not to statements but to decision problems, which are countably infinite sets of questions each requiring a yes or no answer. Such a problem is said to be undecidable if there is no computable function that correctly answers every question in the problem set. The connection between these two is that if a decision problem is undecidable (in the recursion theoretical sense) then there is no consistent, effective formal system which proves for every question A in the problem either "the answer to A is yes" or "the answer to A is no".

Because of the two meanings of the word undecidable, the term independent is sometimes used instead of undecidable for the "neither provable nor refutable" sense. The usage of "independent" is also ambiguous, however. It can mean just "not provable", leaving open whether an independent statement might be refuted.

Undecidability of a statement in a particular deductive system does not, in and of itself, address the question of whether the truth value of the statement is well-defined, or whether it can be determined by other means. Undecidability only implies that the particular deductive system being considered does not prove the truth or falsity of the statement. Whether there exist so-called "absolutely undecidable" statements, whose truth value can never be known or is ill-specified, is a controversial point among various philosophical schools.

One of the first problems suspected to be undecidable, in the second sense of the term, was the word problem for groups, first posed by Max Dehn in 1911, which asks if there is a finitely presented group for which no algorithm exists to determine whether two words are equivalent. This was shown to be the case in 1955.[4]

The combined work of G?del and Paul Cohen has given two concrete examples of undecidable statements (in the first sense of the term): The continuum hypothesis can neither be proved nor refuted in ZFC (the standard axiomatization of set theory), and the axiom of choice can neither be proved nor refuted in ZF (which is all the ZFC axioms except the axiom of choice). These results do not require the incompleteness theorem. G?del proved in 1940 that neither of these statements could be disproved in ZF or ZFC set theory. In the 1960s, Cohen proved that neither is provable from ZF, and the continuum hypothesis cannot be proven from ZFC.

In 1970, Russian mathematician Yuri Matiyasevich showed that Hilbert's Tenth Problem, posed in 1900 as a challenge to the next century of mathematicians, cannot be solved. Hilbert's challenge sought an algorithm which finds all solutions of a Diophantine equation. A Diophantine equation is a more general case of Fermat's Last Theorem; we seek the integer roots of a polynomial in any number of variables with integer coefficients. Since we have only one equation but n variables, infinitely many solutions exist (and are easy to find) in the complex plane; however, the problem becomes impossible if solutions are constrained to integer values only. Matiyasevich showed this problem to be unsolvable by mapping a Diophantine equation to a recursively enumerable set and invoking G?del's Incompleteness Theorem.[5]

In 1936, Alan Turing proved that the halting problem—the question of whether or not a Turing machine halts on a given program—is undecidable, in the second sense of the term. This result was later generalized by Rice's theorem.

In 1973, Saharon Shelah showed the Whitehead problem in group theory is undecidable, in the first sense of the term, in standard set theory.[6]

In 1977, Paris and Harrington proved that the Paris-Harrington principle, a version of the Ramsey theorem, is undecidable in the axiomatization of arithmetic given by the Peano axioms but can be proven to be true in the larger system of second-order arithmetic.

Kruskal's tree theorem, which has applications in computer science, is also undecidable from the Peano axioms but provable in set theory. In fact Kruskal's tree theorem (or its finite form) is undecidable in a much stronger system codifying the principles acceptable on basis of a philosophy of mathematics called predicativism.

Goodstein's theorem is a statement about the Ramsey theory of the natural numbers that Kirby and Paris showed is undecidable in Peano arithmetic.

Gregory Chaitin produced undecidable statements in algorithmic information theory and proved another incompleteness theorem in that setting. Chaitin's theorem states that for any theory that can represent enough arithmetic, there is an upper bound c such that no specific number can be proven in that theory to have Kolmogorov complexity greater than c. While G?del's theorem is related to the liar paradox, Chaitin's result is related to Berry's paradox.

In 2007, researchers Kurtz and Simon, building on earlier work by J.H. Conway in the 1970s, proved that a natural generalization of the Collatz problem is undecidable.[7]

In 2019, Ben-David and colleagues constructed an example of a learning model (named EMX), and showed a family of functions whose learnability in EMX is undecidable in standard set theory.[8][9]

See also

edit

Notes

edit
  1. ^ This means that there exists an algorithm that halts eventually when the answer is yes but may run forever if the answer is no.
  2. ^ There are uncountably many subsets of  , only countably many of which can be decided by algorithms. However, also only countably many decision problems can be stated in any language.

References

edit
  1. ^ "Formal Computational Models and Computability". www.cs.rochester.edu. Retrieved 2025-08-05.
  2. ^ "decision problem". Oxford Reference. Retrieved 2025-08-05.
  3. ^ Aaronson, Scott (21 July 2011). "Rosser's Theorem via Turing machines". Shtetl-Optimized. Retrieved 2 November 2022.
  4. ^ Novikov, Pyotr S. (1955), "On the algorithmic unsolvability of the word problem in group theory", Proceedings of the Steklov Institute of Mathematics (in Russian), 44: 1–143, Zbl 0068.01301
  5. ^ Matiyasevich, Yuri (1970). Диофантовость перечислимых множеств [Enumerable sets are Diophantine]. Doklady Akademii Nauk SSSR (in Russian). 191: 279–282.
  6. ^ Shelah, Saharon (1974). "Infinite Abelian groups, Whitehead problem and some constructions". Israel Journal of Mathematics. 18 (3): 243–256. doi:10.1007/BF02757281. MR 0357114. S2CID 123351674.
  7. ^ Kurtz, Stuart A.; Simon, Janos, "The Undecidability of the Generalized Collatz Problem", in Proceedings of the 4th International Conference on Theory and Applications of Models of Computation, TAMC 2007, held in Shanghai, China in May 2007. ISBN 3-540-72503-2. doi:10.1007/978-3-540-72504-6_49
  8. ^ Ben-David, Shai; Hrube?, Pavel; Moran, Shay; Shpilka, Amir; Yehudayoff, Amir (2025-08-05). "Learnability can be undecidable". Nature Machine Intelligence. 1 (1): 44–48. doi:10.1038/s42256-018-0002-3. ISSN 2522-5839. S2CID 257109887.
  9. ^ Reyzin, Lev (2019). "Unprovability comes to machine learning". Nature. 565 (7738): 166–167. Bibcode:2019Natur.565..166R. doi:10.1038/d41586-019-00012-4. ISSN 0028-0836. PMID 30617250.
结账是什么意思 cos是什么意思 心室预激是什么意思 市组织部长是什么级别 负利率是什么意思
吃什么蔬菜对眼睛好 决心是什么意思 理发师代表什么生肖 方便是什么意思 画五行属什么
没有排卵是什么原因 kpi是什么意思 胃一阵一阵绞痛是什么原因 有什么无什么 什么是熵
veromoda是什么牌子 甲状腺毒症是什么意思 老虎属于什么科动物 有什么中药可以壮阳 花苞裤不适合什么人穿
夏季喝什么茶好hcv8jop8ns9r.cn 小狗需要打什么疫苗dayuxmw.com 鲁迅原名是什么gangsutong.com 脂肪肝适合吃什么食物hcv9jop8ns3r.cn 吃什么养发hcv8jop4ns8r.cn
去威海玩需要准备什么hcv7jop5ns5r.cn 伤口撒什么药粉好得快hcv9jop3ns2r.cn 堂哥的儿子叫什么hcv9jop7ns9r.cn 贝伐珠单抗是什么药hcv8jop3ns5r.cn 地中海贫血有什么影响onlinewuye.com
sm什么意思hcv8jop6ns0r.cn 鲲之大的之是什么意思hcv8jop7ns8r.cn 男人鼻子大代表什么hkuteam.com omega3是什么意思hcv8jop6ns3r.cn 长孙皇后为什么叫观音婢chuanglingweilai.com
社恐到底在害怕什么hcv8jop3ns8r.cn 头上出汗是什么原因hcv9jop0ns0r.cn 猫什么时候打疫苗dajiketang.com 国师代表什么生肖0297y7.com 脑白质脱髓鞘改变是什么意思hcv7jop6ns7r.cn
百度